The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives.
نویسندگان
چکیده
In this paper, we analyze a satellite-DNA family, the RAYSI family, which is specific of the Y chromosomes of Rumex acetosa, a dioecious plant species with a multiple sex-chromosome system in which the females are XX and the males are XY(1)Y(2). Here, we demonstrate that this satellite DNA is common to other relatives of R. acetosa, including Rumex papillaris, Rumex intermedius, Rumex thyrsoides and Rumex tuberosus that are also dioecious species with a multiple system of sex chromosomes. This satellite-DNA family is absent from the genomes of other dioecious Rumex species having an XX/XY sex-chromosome system. Our data confirm recent molecular phylogenies that support a unique origin for all dioecious species of Rumex and two separate lineages for species with single or complex sex-chromosome systems. Our data also support an accelerated degeneration of Y-chromosome in XX/XY(1)Y(2) species by the accumulation of satellite-DNA sequences. On the other hand, the particular non-recombining nature of the Y chromosomes of R. acetosa and their closest relatives lead to a particular mode of evolution of RAYSI sequences. Thus, mechanisms leading to the suppression of recombination between the Y chromosomes reduced the rate of concerted evolution and gave rise to the apparition of different RAYSI subfamilies. Thus, R. acetosa and R. intermedius have two subfamilies (the RAYSI-S and RAYSI-J subfamilies and the INT-A and INT-B subfamilies, respectively), while R. papillaris only has one, the RAYSI-J subfamily. The RAYSI-S and RAYSI-J subfamilies of R. acetosa differ in 83 fixed diagnostic sites and several diagnostic deletions while the INT-A and the INT-B of R. intermedius differ in 27 fixed diagnostic sites. Pairwise comparisons between RAYSI-S and RAYSI-J sequences or between INT-A and INT-B sequences revealed these sites to be shared mutations detectable in repeats of the same variant in same positions. Evolutionary comparisons suggest that the subfamily RAYSI-J has appeared in the common ancestor of R. acetosa and R. papillaris, in which RAYSI-J has replaced totally (R. papillaris) or almost totally the ancestral sequence (R. acetosa). This scenario assumes that RAYSI-S sequences should be considered ancestral sequences and that a secondary event of subfamily subdivision should be occurring in R. intermedius, with their RAYSI subfamilies more closely related to one another than with other RAYSI sequences. Our analysis suggests that the different subfamilies diverged by a gradual and cohesive way probably mediated by sister-chromatid interchanges while their expansion or contraction in number might be explained by alternating cycles of sudden mechanisms of amplification or elimination.
منابع مشابه
Contrasting Patterns of Transposable Element and Satellite Distribution on Sex Chromosomes (XY1Y2) in the Dioecious Plant Rumex acetosa
Rumex acetosa is a dioecious plant with the XY1Y2 sex chromosome system. Both Y chromosomes are heterochromatic and are thought to be degenerated. We performed low-pass 454 sequencing and similarity-based clustering of male and female genomic 454 reads to identify and characterize major groups of R. acetosa repetitive DNA. We found that Copia and Gypsy retrotransposons dominated, followed by DN...
متن کاملCloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa.
Rumex acetosa is characterized by a multiple chromosome system (2n = 12 + XX for females, and 2n = 12 + XY1Y2 for males), in which sex is determined by the ratio between the number of X chromosomes and autosome sets. For a better understanding of the molecular structure and evolution of plant sex chromosomes, we have generated a sex chromosome specific library of R. acetosa by microdissection. ...
متن کاملبررسی برخی فاکتورهای موثر در انتقال ژن به گیاه دوپایه ترشک ( Rumex acetosa L )
Sorrel (Rumex acetosa L.) is a model dioecious plant in genetic and molecular studies for sex determination. In this research, gus reporter gene transformation to leaf disks of this plant via Agrobacterium tumefaciens was evaluated based on transient expression of this gene. Three strains of Agrobacterium( LBA4404, C58 and EHA101) and two kinds of bacterial suspensions (suspension I: Agrobacter...
متن کاملRumex acetosa Y chromosomes: constitutive or facultative heterochromatin?
Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro. 5-azacytidine (5-azaC) treatment of cultured roots caused transitional dispersion of their Y chromosome ...
متن کاملImpact of Repetitive Elements on the Y Chromosome Formation in Plants
In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 368 شماره
صفحات -
تاریخ انتشار 2006